Fast Eigensolver for plasmonic metasurfaces

نویسندگان

  • Alexander O. Korotkevich
  • Xingjie Ni
  • Alexander V. Kildishev
چکیده

Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results from a popular, yet much more computationally expensive method built on a matrix eigenvalue problem. In contrast to the conventional solvers, the proposed method always returns a set of ‘exact’ individual eigenvalues. First, by using the Lehmer-Schur algorithm, we isolate individual complex roots from each other, then use a zero-polishing method applied at the very final stage of ultimate eigenvalue localization. Exceptional computational performance, scalability, and accuracy are demonstrated. ©2014 Optical Society of America OCIS codes: (160.3918) Metamaterials; (050.1755) Computational electromagnetics methods; (050.6624) Subwavelength structures. References and links 1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). 2. M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12364–12368 (2012). 3. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012). 4. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101–013103 (2012). 5. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37(12), 2391–2393 (2012). 6. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013). 7. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012). 8. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013). 9. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009). 10. S. Ishii, A. V. Kildishev, V. M. Shalaev, K.-P. Chen, and V. P. Drachev, “Metal nanoslit lenses with polarization-selective design,” Opt. Lett. 36(4), 451–453 (2011). 11. R. E. Collin, “Reflection and Transmission at a Slotted Dielectric Interface,” Can. J. Phys. 34(4), 398–411 (1956). 12. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56(11), 1502–1508 (1966). 13. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969). 14. F. G. Kaspar, “Diffraction by thick, periodically stratified gratings with complex dielectric constant,” J. Opt. Soc. Am. 63(1), 37–45 (1973). 15. R. Magnusson and T. K. Gaylord, “Analysis of multiwave diffraction of thick gratings,” J. Opt. Soc. Am. 67(9), 1165–1170 (1977). 16. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. #200494 $15.00 USD Received 15 Nov 2013; revised 26 Dec 2013; accepted 28 Dec 2013; published 13 Jan 2014 (C) 2014 OSA 1 February 2014 | Vol. 4, No. 2 | DOI:10.1364/OME.4.000288 | OPTICAL MATERIALS EXPRESS 288 Soc. Am. 68(9), 1206–1210 (1978). 17. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta (Lond.) 28(8), 1087–1102 (1981). 18. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983). 19. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993). 20. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11(9), 2494–2502 (1994). 21. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13(5), 1019–1023 (1996). 22. J. M. Jarem and P. P. Banerjee, “A nonlinear, transient analysis of twoand multi-wave mixing in a photorefractive material using rigorous coupled-wave diffraction theory,” Opt. Commun. 123(4-6), 825–842 (1996). 23. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996). 24. E. Popov and M. Nevière, “Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18(11), 2886–2894 (2001). 25. B. Momeni and B. Rashidian, “Improved coupled wave analysis of two-dimensional planar multiple gratings,” IEEE Trans. Antenn. Propag. 52(1), 165–171 (2004). 26. A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for twodimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73(7), 075107 (2006). 27. X. J. Ni, Z. T. Liu, A. Boltasseva, and A. V. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys., A Mater. Sci. Process. 100(2), 365–374 (2010). 28. A. V. Kildishev and U. K. Chettiar, “Cascading optical negative index metamaterials,” J. Appl. Comput. Electromagnetics Soc. 22, 172–183 (2007). 29. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956). 30. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977). 31. F. Tisseur and K. Meerbergen, “The Quadratic Eigenvalue Problem,” SIAM Rev. 43(2), 235–286 (2001). 32. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011). 33. F. S. Acton, Numerical Methods that Work (Math. Assoc. Amer., Washington, DC, 1990). 34. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium resfponse of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007). 35. J. W. Brown and R. V. Churchill, Complex Variables and Applications (McGraw Hill, 2004). 36. M. J. D. Powell, A Hybrid Method for Nonlinear Equations (Gordon and Breach, 1970). 37. GNU Scientific Library, (1996–2013). http://www.gnu.org/s/gsl/. 38. X. Ni, Z. Liu, F. Gu, M. G. Pacheco, J. Borneman, and A. V. Kildishev, “PhotonicsSHA-2D: Modeling of single-period multilayer optical gratings and metamaterials,” (2012), doi: 10.4231/D3WS8HK4X. https://nanohub.org/resources/6977. 39. Z. Liu, K. P. Chen, X. Ni, V. P. Drachev, V. M. Shalaev, and A. V. Kildishev, “Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence,” J. Opt. Soc. Am. B 27(12), 2465–2470 (2010). 40. A. V. Kildishev, J. D. Borneman, X. J. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE 99(10), 1691–1700 (2011). 41. M. Frigo and S. G. Johnson, “The design and implementation of FFTW 3,” Proc. IEEE 93(2), 216–231 (2005).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color.

A flexible electronic paper in full color is realized by plasmonic metasurfaces with conjugated polymers. An ultrathin large-area electrochromic material is presented which provides high polarization-independent reflection, strong contrast, fast response time, and long-term stability. This technology opens up for new electronic readers and posters with ultralow power consumption.

متن کامل

Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface.

Conventional plasmonic materials, namely noble metals, hamper the realization of practical plasmonic devices due to their intrinsic limitations, such as lack of capabilities to tune in real-time their optical properties, failure to assimilate with CMOS-standards, and severe degradation at elevated temperatures. Transparent conducting oxides (TCOs) is a promising alternative as plasmonic materia...

متن کامل

Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing

Ultrathin plasmonic metasurfaces have proven their ability to control and manipulate light at unprecedented levels, leading to exciting optical functionalities and applications. Although to date metasurfaces have mainly been investigated from an electromagnetic perspective, their ultrathin nature may also provide novel and useful mechanical properties. Here we propose a thin piezoelectric plasm...

متن کامل

Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a prev...

متن کامل

Tunable multiband metasurfaces by moiré nanosphere lithography.

Moiré nanosphere lithography (MNSL), which features the relative in-plane rotation between two layers of self-assembled monodisperse nanospheres as masks, provides a cost-effective approach for creating moiré patterns on generic substrates. In this work, we experimentally and numerically investigate a series of moiré metasurfaces by MNSL. Due to the variety of gradient plasmonic nanostructures ...

متن کامل

Realizing structural color generation with aluminum plasmonic V-groove metasurfaces.

Structural color printing based on all-aluminum plasmonic V-groove metasurfaces is demonstrated under both bright field and dark field illumination conditions. A broad visible color range is realized with the plasmonic V-groove arrays etched on an aluminum surface by simply varying the groove depth while keeping the groove period as a constant. Polarization dependent structural color printing i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014